
A Gentle Introduction to Linked Lists

Michael H. Goldwasser
Dept. Mathematics and Computer Science

Saint Louis University
221 North Grand Blvd

St. Louis, Missouri 63103-2007
goldwamh@slu.edu

ABSTRACT

We consider a pedagogy for introducing linked lists in the
context of a non-programming, breadth-first introductory
course. In short, linked lists are presented based upon their
direct embedding in an underlying memory configuration.
Though this approach to teaching linked lists is not origi-
nal, it is surprisingly rare in a breadth-first context. Yet
it affords a rich exploration of many key aspects of linked
data structures. Furthermore, the coverage can be spiraled
with many common aspects of a breadth-first introduction,
effectively integrating topics such as memory management,
data representation and algorithmic analysis.

Our treatment is coupled with newly developed software
that allows students to fully investigate the depth of the sub-
ject via hands-on, non-programming experiences. Students
can set and modify the contents of a displayed memory con-
figuration, viewing the effect of those changes on a schematic
diagram of the embedded linked list.

Categories and Subject Descriptors
E.2 [Data Storage Representations]: linked represen-
tations; E.1 [Data Structures]: arrays; lists, stacks and
queues; trees; K.3.2 [Computers and Education]: Com-
puter and Information Science Education—computer science
education; D.4.2 [Operating Systems]: Storage Manage-
ment—main memory

General Terms
Algorithms

1. INTRODUCTION
The context for this work is that of a breadth-first intro-

duction to computer science course, akin to CS100b in the
CC2001 Computer Science report [10]. The stated design
for CS100b is “to provide students with an appreciation for
and an understanding of the many different aspects of com-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE 2003 Poster
Copyright 2003 ACM ...$5.00.

puter science.” Ideally, the course implementation should of-
fer students opportunities to interact with and explore such
concepts in a meaningful way. Yet for a course which does
not include a significant programming component, designing
these activities is a challenge [13].

A linked list is a wonderful example of an aspect of com-
puter science for inclusion in such a breadth-first course. It
serves as an example of a non-trivial data structure. When
contrasted with sequential storage of data in an array, linked
lists can be used to illustrate the tradeoffs which arise when
considering alternate data organizations. Algorithmic de-
sign can be introduced when formulating common list op-
erations, as can preliminary algorithmic analysis when dis-
cussing their efficiencies. Furthermore as a dynamic, refer-
ential structure, linked lists naturally reinforce other com-
mon course topics such as that of memory addressing and
management.

Therefore, we consider a pedagogy for introducing linked
lists in a non-programming, breadth-first introductory course.
We also introduce software which provides students a hands-
on environment for investigating the depth and complexity
of the subject. The paper is organized as follows. Section 2
contains a presentation of the pedagogy for linked lists, in-
cluding an overview of the supporting software. In Section 3,
we compare this pedagogy to existing treatments based upon
a survey of common classroom texts as well as articles in the
computer science education literature. A discussion of the
pedagogy’s benefits and a list of detailed learning objectives
is provided in Section 4. We conclude in Section 5, with a
discussion of further potential uses.

2. A PEDAGOGY FOR LINKED LISTS

2.1 A Gentle Introduction
We present linked lists based upon their direct represen-

tation embedded in an underlying memory configuration.
Students are shown a memory configuration, told the ad-
dress of the cell which contains the first piece of data (i.e.,
the list “head”), told that each piece of data is followed, in
the successive memory cell, by the explicit memory address
of the cell containing the next piece of data (i.e., the “next
pointer”), and finally that the list ends whenever“-1” is given
as the next pointer (i.e., a “nil” reference).

For ease of presentation characters are used as data, to be
clearly differentiated from references which are represented
as integers. Figure 1 shows a sample memory configura-
tion, representing the sequence L→ I→ N→ K→ E→ D.
Given a ten-minute introduction, students can generally tra-

Memory Cell: 14 15 16 17 18 19 20 21 22 23 24 25 26 27
Contents: N 22 D -1 L 24 J 17 K 26 I 14 E 16

Figure 1: Memory configuration which includes a linked list headed at cell 18.

Figure 2: Software display of the memory configu-
ration corresponding to Figure 1.

Figure 3: Software display of the schematic diagram
corresponding to Figure 2.

verse such a list with ease. With additional instruction, stu-
dents can learn the process for deleting a given item from
the list, or inserting a new item into a desired place in the
sequence.

Though we use this pedagogy in a breadth-first curricu-
lum, it clearly draws upon the philosophies associated with
the “hardware-first” strategy as outlined by CC2001 [10],
namely to require “as little mystification as possible.” This
treatment could easily apply to the course CS111h, whose
syllabus includes the category“Fundamental data structures:
Primitive types; arrays; records; string and string process-
ing; data representation in memory; pointers and references.”

2.2 Supporting Software
To support this pedagogy, we introduce a software tool

titled A Gentle Introduction to Linked Lists1. It is available,
as a Java Applet, at http://euler.slu.edu/~goldwasser/demos/linked.
The software could be used by the instructor when initially
presenting the material, and later by students as an inde-
pendent, active learning experience.

One panel of the software interface displays a given range
of integer-indexed memory cells, the contents of which are
editable. Figure 2 shows a sample such configuration, match-
ing that of Figure 1. In a second panel, the software displays
the traditional schematic view of a linked list based upon the
current memory settings. The schematic is annotated with
the underlying memory address for each node of the list.
Such a diagram is shown in Figure 3.

The software affords students the opportunity to manipu-
late linked lists without reliance on the syntax of a program-
ming language. At the same time, the interaction allows

1Our choice of name was directly inspired by Andrew Cum-
ming’s A Gentle Introduction to SQL [3], which also provides
a great, interactive tool appropriate for use in a breadth-first
context.

Figure 4: A schematic diagram including a circular
reference.

C O S T

Figure 5: Typical schematic diagram of a linked list.

students to make common mistakes, while seeing the tan-
gible outcome of such errors. The software design includes
the following features:

• The schematic is only updated upon explicit request
by the user. This allows for a period of self-test, where
the user can predict the results before having it di-
agramed by the software. It also avoids the distrac-
tion of inconsistent intermediate stages, which would
be seen during a real-time display of common list op-
erations.

• Between successive updates, all edited cells are high-
lighted, drawing attention to the current set of manip-
ulations.

• The cell contents are represented as strings, thus al-
lowing for a mix of characters and integers, if desired.

• Any string which is not a well-defined memory refer-
ence is treated as a “nil” pointer.

• Circular references are detected and displayed, as shown
in Figure 4.

• There is support for a pseudo-random generation of
memory configurations, for convenient creation of fur-
ther exercises.

3. SURVEY OF EXISTING PEDAGOGIES
In this section, we survey existing approaches for the teach-

ing of linked lists, as well as existing software systems for
supporting the learning experience.

In the context of a programming course, linked lists are
generally introduced using schematic diagrams, such as those
in Figures 5–6, together with a formal syntactic definition
in a given programming language. The schematic figures
often provide intuition and a shorthand for discussion, with
a programming syntax used for concreteness. Through pro-
gramming assignments, students gain insight into the beauty
and complexity of linked structures.

C O S T

N

Figure 6: Typical schematic diagram after an inser-
tion operation.

In the context of a breadth-first introductory course, most
common texts avoid the topic entirely [6, 11], use a program-
ming syntax for concreteness [17], or else rely purely on the
schematic view of lists [5, 8, 15]. Unfortunately, the purely
schematic treatment of the topic is too abstract and overly
simplistic. We imagine an exam question which asks stu-
dents to insert “N” between the “O” and “S” in Figure 5.
Students will almost surely give the “correct” solution, as
in Figure 6, because there is little room for mistakes. The
view of a“pointer” is too loosely connected to the underlying
memory configuration.

The only breadth-first textbook we find that broaches the
topic of linked lists as represented in the underlying mem-
ory configuration is that of Brookshear [1]. Even it uses
a purely schematic treatment of linked lists in the chapter
body. However a series of chapter review problems intro-
duces the connection between a linked list and an underly-
ing memory configuration, asking students to traverse and
even modify such lists. For more advanced data structure
and algorithms courses, several texts [2, 4, 16] include treat-
ment of linked lists embedded in arrays, generally based on
its value as a legitimate implementation technique.

The impact of visualization and interaction in a learning
environment is discussed often in the education literature
(see [12] for example). In the context of algorithm visual-
ization, Grissom et. al. [9] denote levels of student engage-
ment, distinguishing between “simply viewing visualizations
for a short period in the classroom” and “interacting directly
with the visualizations for an extended period outside of the
classroom.”

Rambally [14] described an early system for automatically
generating schematic views of linked lists based upon a syn-
tactic description of an algorithm. Many subsequent such
systems have been developed [7, 13, 18], each of which gen-
erates visualizations of linked data structures as they are
manipulated using the syntax of a given programming lan-
guage. A system described by Wu, Lee and Lin [18] included
a “system memory window” which displayed the underlying
memory configuration as well as a schematic view. The stu-
dent manipulates the schematic view directly with mouse
events, seeing the resulting changes in the memory configu-
ration.

4. POTENTIAL LEARNING OBJECTIVES
Despite its simplicity, this pedagogy affords a very rich

treatment of many common introductory concepts, and if
desired, even some more advanced lessons. We detail many
such potential learning objectives below, grouped according
to major sub-disciplines and ordered generally from intro-
ductory to advanced.

Subtleties of Linked Structures
• Students can recognize the need for an explicit refer-

ence to the head of a list.

• Students can recognize the need for a conventional“nil”
reference, which is clearly distinguishable from a legit-
imate memory reference.

• Students can appreciate the fragility of a linked struc-
ture, namely that a single corrupted reference can ef-
fectively cause the loss of the remainder of a structure.

• Students can recognize the special care required when
operations are performed at the front of the list (or
alternatively, students can explore the use of a sentinel
node as the head of the list).

• Students can interpret the existence of a circular ref-
erence (i.e., back pointer) on the underlying represen-
tation of a list.

• Students might explore how two or more independent
lists can be intertwined in memory.

Memory Usage and Management
• Students will have a clear understanding of a reference

pointer represented explicitly as a memory address.

• Students must explore the issue of memory allocation
in some fashion. As an item is inserted into the list, un-
derlying memory must be found for a new node. When
simulating many insertions and deletions, more formal
treatments of memory management can be explored,
such as

– whether the memory for a deleted node could be
reset to some recognizable ’garbage’ state.

– how garbage collection might be performed.

– how a free list can be used to organize the avail-
able nodes.

• Students might explore the issue of memory fragmen-
tation. Since a node is a two-cell memory structure,
a single isolated memory cell cannot be effectively uti-
lized.

• Because a node is represented as a multi-cell structure,
students must understand alternatives for how such
a multi-cell structure is referenced (e.g., perhaps the
memory address of the first cell is used).

• Students might consider how a system should respond
in the case that no available memory exists for an inser-
tion, or more specifically, no consecutive pair of avail-
able cells.

• Students may explore the low-level encoding of point-
ers versus data as well as how context allows one to
differentiate between the two.

Design and Analysis of Algorithms
• Once students have mastered the ad hoc simulation

of basic operations, such as traversal, insertion and
deletion, they can attempt to formalize the algorithm
specification. In doing so, they can more carefully con-
sider the precise order of operations and whether their
ad hoc techniques rely on their own “local” memory.

• Students should have a clear understanding that a sin-
gle insertion or deletion operation can be performed
in constant time, that is, independent of the length of
the list (though formal asymptotic notation need not
be introduced).

• Students should consider the relative advantages and
disadvantages of differing data organizations. In par-
ticular, a linked list can be contrasted to the sequential
storage of a sequence in a traditional array. Points of
contrast may include the Θ(1) vs. Ω(n) insertion and
deletion times, the varying memory usage, and the ef-
fects of corrupted memory.

• Students can examine how a large piece of a sequence
can be “cut” as a whole in constant time, as opposed
to the linear performance if individually deleting each
item. Furthermore, as the relative links of the removed
portion remain intact, that piece can then be “pasted”
as a whole elsewhere, again in constant time.

• If binary search were introduced in the context of ar-
rays, students can explore why such a technique cannot
be applied to searching a linked list.

5. FURTHER POSSIBILITIES

5.1 Additional Linked Structures
Though this paper specifically addresses singly-linked lists,

the same pedagogy could be used to explore doubly-linked
lists, binary trees, or other naturally linked data structures.
For some such structures, e.g. doubly-linked lists, an issue
is how best to visualize an ill-formed structure.

5.2 Use in Additional Courses
Though originally developed for a CS0 course, we have

used the software as well when covering linked lists in a
programming sequence. The treatment tends to provide a
grounding intuition. Furthermore, it can be coupled with
programming exercises involving linked lists embedded di-
rectly into an array.

Acknowledgement
We greatfully thank Dennis Bouvier for providing construc-
tive feedback on the presentation of this paper.

6. REFERENCES
[1] J. G. Brookshear. Computer Science: an Overview.

Addison-Wesley, Boston, Massachusetts, eighth
edition, 2005.

[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms. The MIT Press,
Cambridge, Massachusetts, second edition, 2002.

[3] A. Cumming. A gentle introduction to SQL.
http://sqlzoo.net/.

[4] N. Dale, D. T. Joyce, and C. Weems. Object-Oriented
Data Structures Using Java. Jones and Bartlett
Publishers, Sudbury, Massachusetts, 2002.

[5] N. Dale and J. Lewis. Computer Science Illuminated.
Jones and Bartlett Publishers, Sudbury,
Massachusetts, second edition, 2004.

[6] R. Decker and S. Hirshfield. The Analytical Engine:
An Introduction to Computer Science Using the
Internet. Brooks/Cole, Belmont, California, second
edition, 2004.

[7] H. L. Dershem, R. L. McFall, and N. Uti. Animation
of Java linked lists. In Proc. 33rd SIGCSE Technical
Symp. on Computer Science Education, pages 53–57,
Covington, Kentucky, Feb. 27–Mar. 3, 2002.

[8] B. A. Forouzan. Foundations of Computer Science:
From Data Manipulation to Theory of Computation.
Brooks/Cole, Pacific Grove, California, 2003.

[9] S. Grissom, M. F. McNally, and T. Naps. Algorithm
visualization in CS education: comparing levels of
student engagement. In S. Diehl and J. T. Stasko,
editors, Proc. 2003 ACM Symp. on Software
Visualization, pages 87–94, San Diego, California,
June 2003.

[10] Joint Task Force on Computing Curricula. Computing
Curricula 2001: Computer Science Final Report.
IEEE Computer Society and the Association for
Computing Machinery, Dec. 2001.
http://www.computer.org/education/cc2001/final.

[11] K. F. Lauckner and M. D. Linter. The Computer
Continuum. Prentice Hall, Upper Saddle River, New
Jersey, second edition, 2001.

[12] T. Naps, G. Rößling, J. Anderson, S. C. W. Dann,
R. Fleischer, B. Koldehofe, A. Korhonen,
M. Kuittinen, C. Leska, L. Malmi, M. McNally,
J. Rantakokko, and R. J. Ross. Evaluating the
educational impact of visualization. In Working group
reports from ITiCSE on Innovation and technology in
computer science education, pages 124–136. ACM
Press, 2003.

[13] M. J. Palakal, F. W. Myers, and C. L. Boyd. An
interactive learning environment for breadth-first
computing science curriculum. In Proc. 29th SIGCSE
Technical Symp. on Computer Science Education,
pages 1–5, Atlanta, Georgia, Feb. 26–Mar. 1, 1998.

[14] G. K. Rambally. Real-time graphical representations
of linked data structures. In Proc. 16th SIGCSE
Technical Symp. on Computer Science Education,
pages 41–48, Mar. 1985.

[15] G. M. Schneider and J. L. Gersting. An Invitation to
Computer Science: Java Version. Thomson Learning,
Boston, Massachusetts, second edition, 2004.

[16] R. Sedgewick. Algorithms in C. Addison-Wesley,
Reading, Massachusetts, third edition, 1998.

[17] R. L. Shackelford. Introduction to Computing and
Algorithms. Addison-Wesley, Reading, Massachusetts,
1997.

[18] C.-C. Wu, G. C. Lee, and J. M.-C. Lin. Visualizing
programming in recursion and linked lists. In Proc.
Third Australasian Conf. on Computer Science
Education, pages 180–186, University of Queensland,
Australia, July 1998.

