CSCI 3100 — Fall 2016 Handout: Applications of Network Flow
Algorithms

Michael H. Goldwasser

Saint Louis University Monday, 7 November 2016

Applications of Network Flow

We will examine a range of interesting computational problems that can effectively be
solved using a network flow model and the computation of a maximum flow. The in-
teresting question for these is how to reduce the original problem to that of a standard
maximum s-t flow computation. Considerations for successfully defining such a strategy
include:

e designating an appropriate flow network, if not already inherent in the problem, or
modifying an existing graph structure to produce a meaningful flow network

e identifying appropriate capacity constraints for all edges in the flow network

e determining how a solution in the form of a maximum flow (or minimum cut) for the
flow network can be used to produce the desired solution for the original problem

Problems to Consider

1. Multiple Sources and Sinks

Consider a situation in which there are an arbitrary set of vertices designated as
sources that can produce flow, and there are an arbitrary set of other vertices
designated as sinks, that can absorb flow. Now consider the maximum amount
of flow that can be successfully delivered from the combination of sources to the
combination of sinks. For motivation, this model might be used by Amazon in which
they have multiple warehouses stocked with product, and they must deliver product
to many locations (but they have flexibility in determining which warehouses supply
which units of delivery). Show that this model can be reduced to a standard
maximum-flow computation on a graph with a single source and sink.

2. Vertex Capacities
In our standard model, each edge has a capacity that designates the maximum
amount of flow that may pass through that edge. Consider a model in which we
wish to enforce additional vertex constraints, namely that we have some capacity
c(v) for each vertex v, designating the maximum amount of flow that may pass
through that vertex. Show that this can be reduced to a standard maximum-flow
computation.

CSCI 3100 — Fall 2016: Handout: Applications of Network Flow

. Maximum Bipartite Matching

Consider an unweighted bipartite graph, that is, a graph in which there are two
distinct sets of vertices and all edges go from a vertex in one set to a vertex in the
other set. Such a graph may be used, for example, to model employees and jobs,
with a vertex for each employee and a vertex for each job, and an edge between an
employee and a job if that employee is qualified to perform that job.

A matching is a subset of edges such that each vertex has at most one such incident
edge. (In our example, it would be an assignment to which employee should perform
which job, assuming that an employee may hold at most one job, and that a job is
held by at most one employee).

Show that the problem of computing the maximum matching of a bipartite graph
can be reduced to a maximum-flow computation.

. Edge-Disjoint Paths

Consider an unweighted, undirected graph. We consider two paths to be edge-
disjoint if they do not share any edges. Edge-disjoint paths provide some level of
redundancy in a real-world model in which there may be edge failures (e.g., roads
closed, bridges out, communication links downs).

Our goal is to determine a maximal set of edge-disjoint paths that connect given
vertices s and ¢t. Show how this can be determined using a maximum-flow compu-
tation.

Note well: We consider two paths to be conflicting if they both use the same edge,
even if they use that edge in opposite directions. Does your approach guarantee
this property?

. Vertex-Disjoint Paths

We consider a different notion of paths that are vertex-disjoint, meaning that they
do not contain any common vertices other than their endpoints. (Note that a set
of vertex-disjoint paths are surely edge-disjoint, but a set of edge-disjoint paths are
not necessarily vertex-disjoint).

Show how to compute a maximal set of vertex disjoint paths between a given pair
of vertices s and t.

. Escape Problems

The problem of finding edge-disjoint or vertex-disjoint paths can be rephrased in
the form of “escape” problems, as in the attached “Leaping Lizards” and “Down
Went the Titatnic” programming contest problems.

CSCI 3100 — Fall 2016: Handout: Applications of Network Flow 3

7. Minimum Cuts
Given the correspondence of the max-flow, min-cut theorem, we should keep in
mind that we can use a maximum flow computation to compute the minimum
cut, when that cut is desired. See, for example, the attached “Sabotage” contest
problem.

8. Other Optimization Problems with Constraints
See some other problem contest problems that can be solved as a flow network
(once you realize how to model it):
e My T-shirt Suits Me
e (Collectors Problem

e Tile Cut

Problem H: Leapin' Lizards

Source file: 1izards.{c, cpp, java}
Input file: 1lizards.in

Your platoon of wandering lizards has entered a strange room in the labyrinth you are exploring. As you are
looking around for hidden treasures, one of the rookies steps on an innocent-looking stone and the room's
floor suddenly disappears! Each lizard in your platoon is left standing on a fragile-looking pillar, and a fire
begins to rage below...

Leave no lizard behind! Get as many lizards as possible out of the room, and report the number of casualties.

The pillars in the room are aligned as a grid, with each pillar one unit away from the pillars to its east, west,
north and south. Pillars at the edge of the grid are one unit away from the edge of the room (safety). Not all
pillars necessarily have a lizard. A lizard is able to leap onto any unoccupied pillar that is within d units of his
current one. A lizard standing on a pillar within leaping distance of the edge of the room may always leap to
safety... but there's a catch: each pillar becomes weakened after each jump, and will soon collapse and no
longer be usable by other lizards. Leaping onto a pillar does not cause it to weaken or collapse; only leaping
off of it causes it to weaken and eventually collapse. Only one lizard may be on a pillar at any given time.

Input: The input file will begin with a line containing a single integer representing the number of test cases,
which is at most 25. Each test case will begin with a line containing a single positive integer n representing
the number of rows in the map, followed by a single non-negative integer d representing the maximum
leaping distance for the lizards. Two maps will follow, each as a map of characters with one row per line. The
first map will contain a digit (0-3) in each position representing the number of jumps the pillar in that position
will sustain before collapsing (0 means there is no pillar there). The second map will follow, with an '’ for
every position where a lizard is on the pillar and a ' . ' for every empty pillar. There will never be a lizard on
a position where there is no pillar.

Each input map is guaranteed to be a rectangle of size n x m, where 1 <n <20 and 1 <m < 20. The leaping
distance is always 1 <d < 3.

Output: For each input case, print a single line containing the number of lizards that could not escape. The
format should follow the samples provided below.

Warning: Brute force methods examining every path will likely exceed the allotted time limit.

Example input: || Example output:

4 Case #1: 2 lizards were left behind.
31 Case #2: no lizard was left behind.
1111 Case #3: 3 lizards were left behind.
1111 Case #4: 1 lizard was left behind.

1111
LLLL
LLLL
LLLL
32

00000
01110
00000

00000000
02000000
00321100
02000000
00000000

Last modified on October 30, 2005 at 1:15 PM.

Problem D
Down Went The Titanic

Time Limit: 8 Second

After the collision of the great Titanic with the iceberg, it went down. Now there are peoples floating in
the cold water struggling with death. Some helping ship will arrive to save them. But they have to survive
until the ships arrive. Now consider a water area with people, floating ices, large woods etc. Consider the
following symbols:

* People staying on floating ice. People want to move from here as the floating ice cannot carry
them for long time. Once a people move from here, the floating ice will get drowned. People can
move to any of the four directions (north, east, west and south).

~ Water. People cannot go or move through them as water is extremely cold and not good enough
for swimming.

Floating ice. People can move to a floating ice. But floating ices are so light that they cannot float
for long time, so people should move from here as soon as possible and once a people move from
here, the floating ice will get drowned.

@ Large iceberg. People can move here but cannot stay here as they are extremely cold. These
icebergs will remain floating all the time. Note that, no two people can stay on floating ice or
large iceberg at the same time.

Large wood. This place is safe. People can move and stay here until the helping ships arrive. A
large wood will get drowned if more than P people stay on it at the same time.

Given the description of the area you have to find an optimal strategy that ensures the maximum number
of living people.

Input:

The input contains a number of test cases. Each test case starts with a line containing three integers X, Y
and P, where X, Y is the dimensions of the area (0 < X, Y < 31) and P (P < 11) is the highest capacity of
the large woods. Next X lines each contains Y characters. These lines contain no blank spaces or any
characters other than asterisk (*), tilde (~), dot (.), at (@) and hash (#). Not more than 50% of the total
area has a people. Input will terminate with end of file (EOF). There is a blank line between two
consecutive test cases.

Output:

For each test case print one line of output, an integer denoting the maximum number of survivors
possible.

SAMPLE INPUT OUTPUT FOR SAMPLE INPUT

Problemsetter: Ishtiak Zaman
Special Thanks To: Md. Mahbubul Hasan

Sabotage

The regime of a small but wealthy dictatorship has been abruptly overthrown by an
unexpected rebellion. Because of the enormous disturbances this is causing in world
economy, an imperialist military super power has decided to invade the country and
reinstall the old regime.

For this operation to be successful, communication between the capital and the
largest city must be completely cut. This is a difficult task, since all cities in the
country are connected by a computer network using the Internet Protocol, which
allows messages to take any path through the network. Because of this, the network
must be completely split in two parts, with the capital in one part and the largest city
in the other, and with no connections between the parts.

There are large differences in the costs of sabotaging different connections, since
some are much more easy to get to than others.

Write a program that, given a network specification and the costs of sabotaging each
connection, determines which connections to cut in order to separate the capital and
the largest city to the lowest possible cost.

Input

Input file contains several sets of input. The description of each set is given below.

The first line of each set has two integers, separated by a space: First one the number
of cities, n in the network, which is at most 50. The second one is the total number of
connections, m, at most 500.

The following m lines specify the connections. Each line has three parts separated by
spaces: The first two are the cities tied together by that connection (numbers in the
range 1 - n). Then follows the cost of cutting the connection (an integer in the range 1
to 40000000). Each pair of cites can appear at most once in this list.

Input is terminated by a case where values of n and m are zero. This case should not
be processed. For every input set the capital is city number 1, and the largest city is
number 2.

Output

For each set of input you should produce several lines of output. The description of
output for each set of input is given below:

The output for each set should be the pairs of cities (i.e. numbers) between which the
connection should be cut (in any order), each pair on one line with the numbers

separated by a space. If there is more than one solution, any one of them will do.

Print a blank line after the output for each set of input.

Sample Input

30
70
20

15
10
25
50

30
70
20

15
10
25
50

oNvNwWULLAAPMURRFRPRUUDNWOLRADMNUR RO
O A NNUTWWWRAROOPEANNUWWWARSO

Sample Output

wwwp
N UL

wwwp
N UL

Problem setter: Jesper Larsson, Lund University, Sweden

4061 - My T-shirt suits me

Time limit: s
Memory limit: MB

Problem Description

Our friend Victor participates as an instructor in an environmental volunteer program. His boss
asked Victor to distribute N T-shirts to M volunteers, one T-shirt each volunteer, where N is
multiple of six, and N>=M. There are the same number of T-shirts of each one of the six
available sizes: XXL, XL, L, M, S, and XS. Victor has a little problem because only two sizes of
the T-shirts suit each volunteer.

You must write a program to decide if Victor can distribute T-shirts in such a way that all
volunteers get a T-shirt that suit them. If N != M, there can be some remaining T-shirts.

Input

The first line of the input contains the number of test cases. For each test case, there 1s a line with
two numbers N and M. N is multiple of 6, 1<=N<=36, and indicates the number of T-shirts.
Number M, 1<=M<=30, indicates the number of volunteers, with N>=M. Subsequently, M lines
are listed where each line contains, separated by one space, the two sizes that suit each volunteer
(XXL, XL, L, M, S, or XS).

Output

For each test case you are to print a line containing YES if there is, at least, one distribution
where T-shirts suit all volunteers, or NO, in other case.

Sample Input

3

18 ©
L XL
XL L
XXL XL
S XS
S
L
4
XL
S
XL

HHEHEnoR X

= o B
=X

Sample Output

YES
NO
YES

Problemsetter: boss

Collector's Problem

Input: standard input
Output: standard output
Time Limit: 5 seconds

Some candy manufacturers put stickers into candy bar packages. Bob and his friends are collecting these
stickers. They all want as many different stickers as possible, but when they buy a candy bar, they don't know
which sticker is inside.

It happens that one person has duplicates of a certain sticker. Everyone trades duplicates for stickers he
doesn't possess. Since all stickers have the same value, the exchange ratio is always 1:1.

But Bob is clever: he has realized that in some cases it is good for him to trade one of his duplicate stickers
for a sticker he already possesses.

Now assume, Bob's friends will only exchange stickers with Bob, and they will give away only duplicate
stickers in exchange with different stickers they don't possess.

Can you help Bob and tell him the maximum number of different stickers he can get by trading stickers with
his friends?

Input

The first line of input contains the number of cases T (T<=20).

The first line of each case contains two integers n and m (2<=n<=10, 5<=m<=25). n is the number of people
involved (including Bob), and m is the number of different stickers available.

The next n lines describe each person's stickers; the first of these lines describes Bob's stickers.

The i-th of these lines starts with a number k;<=50 indicating how many stickers person i has.

Then follows k; numbers between 1 and m indicating which stickers person i possesses.

Output

For each case, print the test case number together with the maximum number of
different stickers Bob can get.

Sample Input

2

25
6111111
3122

35
41211
3222
513443

Sample OQutput

Case #1: 1
Case #2: 3

Explanation of the sample output:

In the first case, no exchange is possible, therefore Bob can have only the sticker with
number 1.

In the second case, Bob can exchange a sticker with number 1 against a sticker with
number 2 of the second person,

and then this sticker against a sticker with number 3 or 4 of the third person, and
now he has stickers 1, 2 and 3 or 1, 2 and 4.

Problem setter: Adrian Kuegel

PROBLEM K — LIMIT 10 SECONDS

Tile Cut

When Frodo, Sam, Merry, and Pippin are at the Green Dragon Inn drinking ale, they like to
play a little game with parchment and pen to decide who buys the next round. The game works
as follows:

Given an m X n rectangular tile with each square marked with one of the incantations W, I, and
N, find the maximal number of triominoes that can be cut from this tile such that the triomino has
W and N on the ends and I in the middle (that is, it spells WIN in some order). Of course the only
possible triominoes are the one with three squares in a straight line and the two ell-shaped ones.
The Hobbit that is able to find the maximum number wins and chooses who buys the next round.
Your job is to find the maximal number.

Side note: Sam and Pippin tend to buy the most rounds of ale when they play this game, so
they are lobbying to change the game to Rock, Parchment, Sword (RPS)!

Input

Each input file will contain multiple test cases. Each test case consists of an m x n rectangular
grid (where 1 < m,n < 30) containing only the letters W, I, and N. Test cases will be separated by
a blank line. Input will be terminated by end-of-file.

Output

For each input test case, print a line containing a single integer indicating the maximum total
number of tiles that can be formed.

Sample Input Sample Output

WIIW 5
NNNN 5
IINN
WWWI

NINWN
INIWI
WWWIW
NNNNN
IWINN

2012 Pacific Northwest Region Programming Contest 16

