Problem A: Pascal's Travels

Source file: pascal. {c, cpp, java}
Input file: pascal.in

An n x n game board is populated with integers, one nonnegative integer per square. The goal is to travel along any
legitimate path from the upper left corner to the lower right corner of the board. The integer in any one square dictates how
large a step away from that location must be. If the step size would advance travel off the game board, then a step in that
particular direction is forbidden. All steps must be either to the right or toward the bottom. Note that a 0 is a dead end which
prevents any further progress.

Consider the 4 x 4 board shown in Figure 1, where the solid circle identifies the start position and the dashed circle
identifies the target. Figure 2 shows the three paths from the start to the target, with the irrelevant numbers in each removed.

2331 @ 13 @ @

1213

1231 (e

311} L0 013 0
Figure 1 Figure 2

Input: The input contains data for one to thirty boards, followed by a final line containing only the integer -1. The data for a
board starts with a line containing a single positive integer n, 4 < n < 34, which is the number of rows in this board. This is
followed by n rows of data. Each row contains z single digits, 0-9, with no spaces between them.

Output: The output consists of one line for each board, containing a single integer, which is the number of paths from the
upper left corner to the lower right corner. There will be fewer than 2% paths for any board.

Warning: Brute force methods examining every path will likely exceed the allotted time limit. 64-bit integer values are
available as long values in Java or long long values using the contest's C/C++ compilers.

Example input: |[Example output:

4 3
2331 0
1213 7
1231
3110
4

3332
1213
1232
2120
5

11101
01111
11111
11101
11101
-1

Last modified on October 26, 2005 at 6.:45 PM.

(J
International Collegiate ==== event
!‘- m acm Programming Contest i=52s sponsor

H: Robot Challenge

You have entered a robot in a Robot Challenge. A course is set up in a 100m by
100m space. Certain points are identified within the space as targets. They are
ordered — there is a target 1, a target 2, etc. Your robot must start at (0,0). From
there, it should go to target 1, stop for 1 second, go to target 2, stop for 1 second,
and so on. It must finally end up at, and stop for a second on, (100,100).

Each target except (0,0) and (100,100) has a time penalty for missing it. So, if
your robot went straight from target 1 to target 3, skipping target 2, it would incur
target 2’'s penalty. Note that once it hits target 3, it cannot go back to target 2. It
must hit the targets in order. Since your robot must stop for 1 second on each
target point, it is not in danger of hitting a target accidentally too soon. For
example, if target point 3 lies directly between target points 1 and 2, your robot
can go straight from 1 to 2, right over 3, without stopping. Since it didn’t stop, the
judges will not mistakenly think that it hit target 3 too soon, so they won’t assess
target 2’s penalty. Your final score is the amount of time (in seconds) your robot
takes to reach (100,100), completing the course, plus all penalties. Smaller
scores are better.

Your robot is very maneuverable, but a bit slow. It moves at 1 m/s, but can turn
very quickly. During the 1 second it stops on a target point, it can easily turn to
face the next target point. Thus, it can always move in a straight line between
target points.

Because your robot is a bit slow, it might be advantageous to skip some targets,
and incur their penalty, rather than actually maneuvering to them. Given a
description of a course, determine your robot’s best (lowest) possible score.

The Input

There will be several test cases. Each test case will begin with a line with one
integer, N (1 <N < 1000) which is the number of targets on the course. Each of
the next N lines will describe a target with three integers, X, Y and P, where
(X,Y) is a location on the course (1 < X,Y < 99, X and Y in meters) and P is the
penalty incurred if the robot misses that target (1 < P < 100). The targets will be
given in order — the first line after N is target 1, the next is target 2, and so on. All
the targets on a given course will be unique — there will be at most one target
point at any location on the course. End of input will be marked by a line with a
single 0.

The Output

For each test case, output a single decimal number, indicating the smallest
possible score for that course. Output this number rounded (NOT truncated) to
three decimal places. Print each answer on its own line, and do not print any
blank lines between answers.

2009 ACM ICPC Southeast USA Regional Programming Contest
Page 13 of 16 7 November 2009

(=

Sample Input

1
50
3
30
60
10
3
30
60
10
0

50

30
60
90

30
60
90

20

90
80
100

90
80
10

B acm

Sample Output
143.421

237.716
154.421

International Collegiate
Programming Contest

2009 ACM ICPC Southeast USA Regional Programming Contest
Page 14 of 16

7 November 2009

Problem I: RIPOFF

Source file: ripoff. {c, cpp, java}
Input file: ripoff.in

Business has been slow at Gleamin’ Lemon Used Auto Sales. In an effort to bring in new customers,
management has created the Rebate Incentive Program Of Fabulous Fun (or RIPOFF). This is a simple game
which allows customers to try and win a rebate on an automobile purchase. The RIPOFF game is a board
game where each square is labeled with a rebate amount. The customer advances through the board by
spinning a spinner. Each square he lands on adds to his total rebate amount. When he reaches the end of the
board he is rewarded with the total rebate amount.

Of course, given the company involved, it should come as no surprise that there are a couple of catches
written in the fine print. The first is that there is a limit to the number of turns the customer has to finish the
game; if he doesn’t reach the end within the allotted number of turns then he loses his rebate. The second is
that some of the squares actually have a negative amount which subtract from the rebate instead of adding to
it. A particularly unlucky customer might even come out of the game with a negative rebate.

Even with these catches, the management of Gleamin’ Lemon is concerned that someone might win a
particularly large rebate—something they would like to avoid at all costs. Your job is to take a particular
configuration for the RIPOFF game and decide the maximum rebate a customer could possibly obtain.

Consider, for example, the game board below. Assume we have 5 turns to finish the game, and each turn we
can move between 1 and 4 spaces depending on what we spin. Notice that we must start just before the
board begins, so spinning a 1 causes us to land on the first square. Also notice we must end by landing past
the end of the last square. It does not have to be exact; any number that gets us off of the board will work.

" " Bl i WA I A

Start | 100 50 | -20 60 30 | -10 | -30 | -50 20 70 End

NA A S A N N _A
‘ Figure 1

The illustration shows two different possible ways the game might go. Following the arrows on the top, if we
spina 2, 3,4, 1, and 1 respectively, we will win a total rebate of 50 + 30 + 20 + 70 = $170. However, the
best possible rebate we could win would be $220. We would win this amount if we spun a 1, 3, 2, 4, and 1
respectively, as shown by the lower path. Notice that we did not land on every square with a positive
number; if we had we wouldn’t have been able to make it to the end of the board before the 5 turns was up.

"W e Il e Il "

Start 150| 100 |-200|-100|-300|-100|-200) 100| 150| End

Figure 2

The illustration in Figure 2 shows a game where we have 4 turns to finish the game, and can move up to 3
spaces each turn. Again, two different paths are shown, the one on top earning a rebate of -$150, and the one
on bottom earning a rebate of -$100. In fact, -$100 is the highest possible rebate we could earn for this game
(a fact that would no doubt please the management of Gleamin” Lemon). Of course, there also might be a
sequence of moves in which we do not reach the end before the turn limit—e.g. spinning a 1 every time.
Although not finishing would actually be preferable to finishing with a negative rebate, in this problem we are
only going to consider sequences of moves which allow us to reach the end before the turn limit.

Input: The input consists of one to twenty data sets, followed by a line containing only 0.
The first line of a data set contains three space separated integers N S 7, where

N is the total number of squares on the board, 2 < N < 200.
S is the maximum number of spaces you may advance in each turn, 2 <5< 10.
T is the maximum number of turns allowed, where N+ 1 <STand T<N + 1.

The data set ends with one or more lines containing a total of N integers, the numbers on the board. Each
number has magnitude less than 10000.

Output: The output for each data set is one line containing only the maximum possible rebate that can be
earned by completing the game.

To complete the game you must advance a total of N+ 1 spaces in at most 7 turns, each turn advancing from
1 to S spaces inclusive. It will always be possible to complete a game. However, there may be a very large
number of different turn sequences that will finish, so you will need to be careful in choosing your algorithm.

The sample input data corresponds to the games in the Figures.

Example input: Example output:
10 4 5 220

100 50 -20 60 30 -100

-10 =30 =50 20 70

9 3 4

150 100 -200
-100 -300 -100
-200 100 150
0

Last modified on October 18, 2009 at 9:58 AM.

2014 North America Qualifier / [) \ i

@ % ACIT] International Collegiate Programming Contest < '.>

Problem H
Narrow Art Gallery

A long art gallery has 2N rooms. The gallery is laid out as N rows of 2 rooms side-by-side. Doors
connect all adjacent rooms (north-south and east-west, but not diagonally). The curator has been told
that he must close off k of the rooms due to staffing cuts. Since visitors must enter using either room at
one end of the gallery, proceed through the gallery, and exit from either room at the other end, he must
not close off any two rooms that would block passage through the museum. That is, any two rooms in
the same row, or two rooms that touch diagonally in adjacent rows. Furthermore, he has determined how
much value each room has to the general public, and now he wants to close off those k& rooms that leave
the most value available to the public, without blocking passage through the museum.

718
419
3|7
519
71 2
10(3
0]10
3| 2
6|3
719

Figure H.1: The art gallery shows an optimal solution to the third sample input problem. The gray rooms
show those that should be closed.

Input

Input will consist of multiple problem instances (galleries). Each problem instance will begin with a
line containing two integers N and k, where 3 < N < 200 gives the number of rows, and 0 < k < N
gives the number of rooms that must be closed off. This is followed by N rows of two integers, giving
the values of the two rooms in that row. Each room’s value v satisfies 0 < v < 100. A line containing 0
0 will follow the last gallery.

Output

For each gallery, output the amount of value that the general public may optimally receive, one line per
gallery.

ACM-ICPC North America Qualifier 2014 Problem H: Narrow Art Gallery 15

2014 North America Qualifier @

@) % ACIN] International Collegiate Programming Contest (. .)

Sample Input 1 Sample Output 1
6 4 17
31
21
12
13
33
00
00
Sample Input 2 Sample Output 2
4 3 17
3 4
11
11
56
00
Sample Input 3 Sample Output 3
10 5 102
7 8
9
7
9
2

O J oy WO J 0 Wb
o
o W

o VW W N

ACM-ICPC North America Qualifier 2014 Problem H: Narrow Art Gallery

16

Problem B: Lawrence of Arabia

Source: lawrence. {c,cpp,java}
Input: lawrence.in
Output: lawrence.out

T. E. Lawrence was a controversial figure during World War I. He was a British
officer who served in the Arabian theater and led a group of Arab nationals in guerilla
strikes against the Ottoman Empire. His primary targets were the railroads. A highly
fictionalized version of his exploits was presented in the blockbuster movie,
"Lawrence of Arabia".

You are to write a program to help Lawrence figure out how to best use his limited
resources. You have some information from British Intelligence. First, the rail line is
completely linear---there are no branches, no spurs. Next, British Intelligence has
assigned a Strategic Importance to each depot---an integer from 1 to 5. A depot is of
no use on its own, it only has value if it is connected to other depots. The Strategic
Value of the entire railroad is calculated by adding up the products of the Strategic
Values for every pair of depots that are connected, directly or indirectly, by the rail
line. Consider this railroad:

Its Strategic Value is 4*5 + 4*1 + 4*2 + 5*1 + 5*%2 + 1*2 = 49.

Now, suppose that Lawrence only has enough resources for one attack. He cannot
attack the depots themselves---they are too well defended. He must attack the rail
line between depots, in the middle of the desert. Consider what would happen if
Lawrence attacked this rail line right in the middle:

The Strategic Value of the remaining railroad is 4*5 + 1*2 = 22. But, suppose
Lawrence attacks between the 4 and 5 depots:

The Strategic Value of the remaining railroad is 5*1 + 5*2 + 1*2 = 17. This is
Lawrence's best option.

Given a description of a railroad and the number of attacks that Lawrence can
perform, figure out the smallest Strategic Value that he can achieve for that railroad.

Input

There will be several data sets. Each data set will begin with a line with two integers,
n and m. n is the number of depots on the railroad (1=n=<1000), and m is the number
of attacks Lawrence has resources for (0=m<n). On the next line will be n integers,
each from 1 to 5, indicating the Strategic Value of each depot in order. End of input
will be marked by a line with n=0 and m=0, which should not be processed.

Output

For each data set, output a single integer, indicating the smallest Strategic Value for
the railroad that Lawrence can achieve with his attacks. Output each integer in its
own line.

Sample Input

[
N

oh~hhbhp
ouUIN U=
=
N

Sample Output

17
2

Problem C: Bright Bracelet

Source file: bracelet.{c, cpp, java, pas}
Input file: bracelet.in
Output file: bracelet.out

Bracelet 2

Bracelets can be made from a collection of octagonal pieces, with two opposite sides of an octagon attached
to octagons on either side. The colors of the edges of the octagons vary. The different colors are labeled with
different letters in the diagrams. Bracelets only look good if the connecting sides of two adjacent octagons are
the same color. Above are two possible bracelets. (The ends also get fastened together.) These two bracelets
could be made from the same four octagons, reordered and rotated. Assume that the octagons are never
flipped over.

It happens that the better selling bracelets are those with the darker colors on the edges connecting the
bracelet. The brightness of each lettered color is a positive integer, with higher numbers being brighter.
Suppose the brightness of the labeled colors are:

[[o [F o i
7050 10 5060 30 20 a0

We can compare the desirability of these two arrangements of the octagons by adding the brightness of the
colors at each joint (including the connection of the two ends). For Bracelet 1, colors A, A, E, and E have
sum 70 + 70 + 60 + 60 = 260. For Bracelet 2, colors C, C, G, and E have sum 10 + 10 + 20 + 60 = 100.
Bracelet 2 is preferable, having the smaller sum. In fact, Bracelet 2 provides the best possible result among
all rearrangements and rotations of these four octagons.

There are from one to 20 data sets, followed by a final line containing only 0. A data set starts with a line
containing nine blank-separated integers. The first is the number, n, of octagons that form the bracelet, where

4 <n < 11. The remaining eight numbers are the brightness for colors A through H, in order. Each brightness
is positive and less than 256.

The next n lines each contain eight letters, all in the range from A through H. Each gives the edge colors for
one octagon, in clockwise order. Individual colors may appear zero or more times in the octagons. Different
colors may have the same brightness, but that does not make them the same color.

The output contains one line for each data set: If no bracelet can be constructed using all the octagons, the
line contains "impossible". Otherwise the line contains the minimal sum of the brightness for the connections.
Caution: If your solution considers all possible orderings and rotations individually, it will run out of time.

Example input: Example output:

4 70 90 10 50 60 30 20 40 100
ACACACAC 15
ABCDEFGH impossible
EEEEECCC

EECCAGGG
5123456738
AAAABBBB

BBBBCCCC

CCCCDDDD

DDDDEEEE

EEEEAAAA

6 50 50 50 50 100 1 2 3
HHHHHHHH

BBBBCCCC

CDCDDDDD

DEDEEEEE

EFEFEFEF

FFFFFFFF

0

Last modified on October 24, 2003 at 8:55 AM.

(J
International Collegiate ==== event
!‘- m acm Programming Contest i=52s sponsor

I: Mosaic

An architect wants to decorate one of his buildings with a long, thin mosaic. He
has two kinds of tiles available to him, each 2 inches by 2 inches:

- g -
EE NN

He can rotate the second kind of tile in any of four ways. He wants to fill the
entire space with tiles, leaving no untiled gaps. Now, he wonders how many
different patterns he can form. He considers two mosaics to be the same only if
they have exactly the same kinds of tiles in exactly the same positions. So, if a
rotation or a reflection of a pattern has tiles in different places than the original,
he considers it a different pattern. The following are examples of 4” x 16”
mosaics, and even though they are all rotations or reflections of each other, the
architect considers them to be four different mosaics:

| | |
L - | . L |
[]] | | | []

| | |
L — | L | i
| | []] [] |

Input

There will be several test cases. Each test case will consist of two integers on a
single line, Nand M (2 <N <10, 2 <M< 500). These represent the dimensions of
the strip he wishes to fill, in inches. The data set will conclude with a line with two
0’s.

Output

For each test case, print out a single integer representing the number of unique
ways that the architect can tile the space, modulo 10°. Print each integer on its
own line, with no extra whitespace. Do not print any blank lines between
answers.

2009 ACM ICPC Southeast USA Regional Programming Contest
Page 15 of 16 7 November 2009

International Collegiate ==== event
!‘ % acm Programming Cumst i=5E+ sponsor

Sample Input
2 10

16

50

0

[@ TSN

Sample Output

25
366318
574777

2009 ACM ICPC Southeast USA Regional Programming Contest
Page 16 of 16 7 November 2009

