
Fully Polynomial-Time Approximation Scheme for Subset Sum
Lecture notes by Michael Goldwasser

Input: Set S of positive integers x1, x2, . . . , xn and a target goal t.

Decision problem: Is it possible to find a subset of S that sums precisely to t?

Optimization problem: What is largest possible subset sum that is at most t?

We saw an O(n · t) algorithm that solves the decision problem, and which can easily be adapted
to solve the optimization problem (we’ll review below). But this is not formally a polynomial
algorithm because the problem input size is O(n · lg t).

Unless P = NP, there cannot be a polynomial-time solution. But we will see that we can get
a polynomial time algorithm that guarantees to find a solution that is at most a factor of (1 + ε)
away from the optimal solution for any constant ε > 0. The catch is that the runtime depends on
epsilon, specifically, O(1ε · n

2 · lg t). So the closer you want to guarantee you are to the optimal
solution, the more expensive the algorithm becomes, and you would need to get to ε < 1

t to be sure
that error is strictly less than 1, yet then runtime is back to dependence on t.

Since Chapter 35.5 of CLRS provides formal writeup, we get to instead frame the big picture
in our presentation.

Exact Algorithm

We wish to build a list P of all sums that can be formed from subsets of S. We can build this
iteratively by computing Pi which is such a list using only subsets of {x1, x2, . . . , xi}, and thus
P = Pn. Given Pi−1 we can form Pi which consists of everything from Pi−1 (since we can choose
not to use xi or any sum we can get by adding xi to any of the totals found in Pi−1 (we denote this
as “Pi−1 + xi”).

If we initialize P0 =< 0 > and we maintain each in sorted order, we can easily merge sequences
Pi−1 and Pi−1 + xi in time linear in the length of the sequence (and we could also throw away any
values greater than t as we go). But the problem is that in general it may be that |Pi| = 2i, and
so runtime could be Θ(2n), or if throwing away large elements, Θ(n · t), which is not polynomial in
the input size.

Example: S = {1, 4, 5}.
L0 =< 0 >
L1 =< 0, 1 >
L2 =< 0, 1, 4, 5 >
L3 =< 0, 1, 4, 5, 6, 9, 10 >

Approximation Algorithm

The key insight will be a subroutine to “trim” our list of values at each stage based on a trimming
parameter δ with 0 < δ < 1. Subroutine Trim(L, δ) will reduce list L of integers to a subsequence
L′ while guaranteeing that for any y ∈ L there remains some z ∈ L′ such that y

1+δ ≤ z ≤ y. In
effect z becomes a nearby substitute for removed y.

1

As an example, with δ = 0.1 and L =< 10, 11, 12, 15, 20, 21, 22, 23, 24, 29 > we might trim to
L′ =< 10, 12, 15, 20, 23, 29 >. Notice that removed 11 has a nearby substitute in 10 as 11

1.1 ≤ 10 ≤ 11.
Similarly, elements 21 and 22 are sufficiently approximated by 20, and removed 24 is approximated
by remaining 23.

Assume we maintain L =< y1, y2, . . . , ym > in sorted order such that y1 < y2 < · · · < ym. We
can implement the following strategy for trimming in O(m) time.

Trim(L, δ)
L′ = < y1 >
last = y1
for j = 2 to m

if yj > last · (1 + δ)
append yj to L′

last = yj
return L′

Note as well that if we only keep values t or less in result L′, then |L′| ≤ 2 + log(1+δ) t, because
each pair of remaining elements z < z′ we have separation such that z′ > (1 + δ)z.

Our overall approximation algorithm is as follows for some 0 < ε < 1:

Approx-Subset-Sum(S, t, ε)
n = |S|
L0 =< 0 >
for i = 1 to n

Li = Merge(Li−1, Li−1 + xi)
Li = Trim(Li,

ε
2n)

remove form Li any values that are strictly greater than t
return largest value in Ln

Before proving that this algorithm provides a polynomial-time approximation scheme, we cite
some underlying mathematical facts about logs and exponents for x > 0.

Fact 1: ex = 1 + x+ x2

2! + x3

3! + · · ·
Fact 2: limn→∞

(
1 + x

n

)n
= ex

Fact 3: ln(1 + x) satisfies x
1+x ≤ ln(1 + x) ≤ x

Let’s first argue that the running time of the proposed algorithm is O(1ε · n
2 · lg t). By earlier

argument, and given choice of δ = ε
2n , we have that the size of any Li is

|Li| ≤ 2 + log(1+ ε
2n) t = 2 +

ln t

ln
(
1 + ε

2n

)
≤ 2 +

2n

ε
·
(

1 +
ε

2n

)
· ln t = 2 +

2n+ ε

ε
· ln t

≤ 2 +
3n

ε
· ln t = O(

1

e
· n · ln t)

And thus are overall algorithm does n passes each of which is linear in the list length.

2

Lemma. For any y ∈ Pi, there exists z ∈ Li such that

y(
1 + ε

2n

)i ≤ z ≤ y
Proof. Induction on i

Theorem. If y∗ is true optimal sum and z∗ is value returned by the algorithm, then y∗

z∗ ≤ 1 + ε.

Proof. By Lemma,
y∗

z∗
≤

(
1 +

ε

2n

)n
.

By Fact 2, we get that

lim
n→∞

(
1 +

ε

2n

)n
= eε/2.

Furthermore, by derivative we find that expression
(
1 + ε

2n

)n
is strictly increasing and thus we

approach the limit from below and for fixed n we have(
1 +

ε

2n

)n
≤ eε/2

≤ 1 +
ε

2
+

(
ε

2

)2

due to Fact 1

≤ 1 + ε due to 0 < ε < 1

3

