
Television.cpp Page 1 of 4

1: #include <iostream>

2: #include <string>

3: using namespace std;

4:

5: class Television {

6:

7: /* class-level attributes */

8: static const int MIN_VOLUME = 0;

9: static const int MAX_VOLUME = 10;

10: static const int MIN_CHANNEL = 2;

11: static const int MAX_CHANNEL = 99;

12:

13: private:

14: // Data members of instance

15:

16: /** Whether the power is on */

17: bool powerOn;

18:

19: /** Whether the tv is muted */

20: bool muted;

21:

22: /** The current volume level */

23: int volume;

24:

25: /** The most recent previous channel number */

26: int prevChan;

27:

28: public:

29:

30: /** Creates a new Television instance.

31: *

32: * The power is initially off. Upon the first time the TV is turned on,

33: * it will be set to channel 2, and a volume level of 5.

34: */

35: Television() : powerOn(false), muted(false), volume(5),

36: channel(2), prevChan(2) { }

37:

38: /** Toggles the power setting.

39: *

40: * If Television is off, turns it on.

41: * If Television is on, turns it off.

42: */

43: togglePower() { powerOn = !powerOn; }

44:

45: /** Toggles the setting for mute.

46: *

47: * If power is off, there is no effect.

48: *

49: * Otherwise, if television was unmuted, it becomes muted.

50: * If television was muted, it becomes unmuted and the volume is

51: * restored to its previous setting.

52: */

53: void toggleMute() {

54: if (powerOn)

55: muted = !muted;

56: }

57:

58: /** Increments the volume of the Television by one increment.

59: *

60: * If power is currently off, there is no effect (-1 returned).

61: * Otherwise, updates the volume setting appropriately.

62: *

63: * If volume was at maximum level, it remains at maximum level.

64: * If television is currently muted, it will be unmuted as a result.

65: *

Television.cpp Page 2 of 4

66: * @return the resulting volume level

67: */

68: int volumeUp() {

69: if (powerOn) {

70: if (volume < MAX_VOLUME)

71: volume++;

72: muted = false;

73: return volume;

74: } else

75: return -1;

76: }

77:

78: /** Decrements the volume of the Television by one increment.

79: *

80: * If power is currently off, there is no effect (-1 returned).

81: * Otherwise, updates the volume setting appropriately.

82: *

83: * If volume was at minimum level, it remains at minimum level.

84: * If television is currently muted, it will be unmuted as a result.

85: *

86: * @return the resulting volume level

87: */

88: int volumeDown() {

89: if (powerOn) {

90: if (volume > MIN_VOLUME)

91: volume--;

92: muted = false;

93: return volume;

94: } else

95: return -1;

96: }

97:

98: /** Increments the channel.

99: *

100: * If power is off, there is no effect (-1 returned).

101: * Otherwise, updates the channel setting appropriately.

102: *

103: * If channel had been set to the maximum of the valid range of

104: * channels, the effect will be to ’wrap’ around resulting in the

105: * channel being set to the minimum channel.

106: *

107: * @return The resulting channel setting

108: */

109: int channelUp() {

110: if (powerOn) {

111: prevChan = channel;

112: channel++;

113: if (channel > MAX_CHANNEL)

114: channel = MIN_CHANNEL; // wrap around

115: return channel;

116: } else

117: return -1;

118: }

119:

120: /** Decrements the channel.

121: *

122: * If power is off, there is no effect (-1 returned).

123: * Otherwise, updates the channel setting appropriately.

124: *

125: * If channel had been set to the minimum of the valid range of

126: * channels, the effect will be to ’wrap’ around resulting in the

127: * channel being set to the maximum channel.

128: *

129: * @return The resulting channel setting

130: */

Television.cpp Page 3 of 4

131: int channelDown() {

132: if powerOn {

133: prevChan = channel;

134: channel--;

135: if (channel < MIN_CHANNEL)

136: channel = MAX_CHANNEL; // wrap around

137: return channel;

138: } else

139: return -1;

140: }

141:

142: /** Sets the channel to given number (if valid).

143: *

144: * If power is off, there is no effect.

145: * If given number is illegal channel, no effect.

146: *

147: * @param number the desired channel number

148: * @return true if change was enacted; false otherwise.

149: */

150: bool setChannel(number) {

151: if ((powerOn) && (MIN_CHANNEL <= number) && (number <= MAX_CHANNEL)) {

152: prevChan = channel; // must record this before it is lost

153: channel = number;

154: return true;

155: } else

156: return false;

157: }

158:

159: /** Changes the channel to most recent, previously viewed.

160: *

161: * If power is off, there is no effect.

162: *

163: * @return the resulting channel setting

164: */

165: int jumpPrevChannel() const {

166: if (powerOn) {

167: int temp;

168: temp = channel;

169: channel = prevChan;

170: prevChan = temp;

171: return channel;

172: } else

173: return -1;

174: }

175:

176: /* allows private access to external function */

177: friend ostream& operator<<(ostream&, const Television&);

178: };

179:

180: /*

181: * Overloading the output operator.

182: */

183: ostream& operator<<(ostream& out, const Television& tv) {

184: out << "Power setting is currently "

185: << (tv.powerOn ? "true" : "false") << endl

186: << "Channel setting is currently "

187: << tv.channel << endl

188: << "(previous channel) is currently "

189: << tv.prevChan << endl

190: << "Volume Setting is currently "

191: << tv.volume << endl

192: << "Mute is currently "

193: << (tv.muted ? "true" : "false") << endl;

194: return out;

195: }

Television.cpp Page 4 of 4

196:

197: /** Sample unit test. */

198: int main() {

199:

200: Television sony; // uses the DEFAULT constructor

201: cout << "Newly created television:" << endl;

202: cout << sony << endl << endl;

203:

204: sony.channelUp();

205: cout << "After call to channelUp():" << endl;

206: cout << sony << endl << endl;

207:

208: sony.togglePower();

209: cout << "After call to togglePower():" << endl;

210: cout << sony << endl << endl;

211:

212: sony.setChannel(22);

213: cout << "After call to setChannel(22):" << endl;

214: cout << sony << endl << endl;

215:

216: sony.jumpPrevChannel();

217: cout << "After call to jumpPrevChannel():" << endl;

218: cout << sony << endl << endl;

219:

220: sony.jumpPrevChannel();

221: cout << "After another call to jumpPrevChannel():" << endl;

222: cout << sony << endl << endl;

223:

224: sony.channelUp();

225: cout << "After call to channelUp():" << endl;

226: cout << sony << endl << endl;

227:

228: sony.jumpPrevChannel();

229: cout << "After call to jumpPrevChannel():" << endl;

230: cout << sony << endl << endl;

231:

232: sony.toggleMute();

233: cout << "After call to toggleMute():" << endl;

234: cout << sony << endl << endl;

235:

236: sony.volumeUp();

237: cout << "After call to volumeUp():" << endl;

238: cout << sony << endl << endl;

239:

240: // try to max-out the volume

241: for (int i=0; i<250; i++)

242: sony.volumeUp();

243: cout << "After 250 calls to volumeUp():" << endl;

244: cout << sony << endl << endl;

245:

246: // try to wrap-around the channel

247: for (int i=0; i<250; i++)

248: sony.channelDown();

249: cout << "After 250 calls to channelDown():" << endl;

250: cout << sony << endl << endl;

251: }

